Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Opt Express ; 32(4): 5043-5055, 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38439241

RESUMEN

The optical fiber distributed strain sensor based on the optical frequency domain reflectometer (OFDR) preserves its dominant position in short-distance measurement fields with high spatial resolution, such as biomedical treatment, soft robot, etc. However, owing to the weak intensity of the Rayleigh backscattered signal (RBS) in the single-mode fiber (SMF) and complex computation, the large strain changes cannot be precisely and rapidly demodulated by the traditional cross-correlation method. In this work, the OFDR with backscattering enhanced optical fiber (BEOF) is proposed and demonstrated for fast and large strain measurement. By enhancing the RBS amplitude, the signal-to-noise ratio (SNR) is improved, resulting in a higher similarity between the reference signal and test signal, which is beneficial for the expansion of the strain measurement range. Moreover, the adaptive local feature extraction and matching (ALFEM) algorithm is presented and demonstrated, which replaces the traditional cross-correlation method for strain demodulation and fast measurement. On account of the enhancement ratio of BEOF, the dominant characteristic data segment can be extracted from whole wavelength data. In the experiments, the enhancing ratio of BEOF is designed as 10, resulting in the spatial resolution reaches 400µm and the strain measurement range is greatly increased to 4800µÉ›. Further, the effectiveness of the ALFEM algorithm has been verified, in which the strain demodulation time is approximately 25% of that of the traditional method. This scheme fully exploits the enhancement characteristic of the BEOF and is also applicable to the systems based on other types of BEOF, different strain changes and sensing distances.

2.
Small ; : e2311299, 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38366314

RESUMEN

Silicon (Si) anode has attracted broad attention because of its high theoretical specific capacity and low working potential. However, the severe volumetric changes of Si particles during the lithiation process cause expansion and contraction of the electrodes, which induces a repeatedly repair of solid electrolyte interphase, resulting in an excessive consuming of electrolyte and rapid capacity decay. Clearly known the deformation and stress changing at µÎµ resolution in the Si-based electrode during battery operation provides invaluable information for the battery research and development. Here, an in operando approach is developed to monitor the stress evolution of Si anode electrodes via optical fiber Bragg grating (FBG) sensors. By implanting FBG sensor at specific locations in the pouch cells with different Si anodes, the stress evolution of Si electrodes has been systematically investigated, and Δσ/areal capacity is proposed for stress assessment. The results indicate that the differences in stress evolution are nested in the morphological changes of Si particles and the evolution characteristics of electrode structures. The proposed technique provides a brand-new view for understanding the electrochemical mechanics of Si electrodes during battery operation.

3.
Ultrasonics ; 138: 107233, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38171228

RESUMEN

Breast cancer has become the most common cancer worldwide, and early screening improves the patient's survival rate significantly. Although pathology with needle-based biopsy is the gold standard for breast cancer diagnosis, it is invasive, painful, and expensive. Meanwhile it makes patients suffer from misplacement of the needle, resulting in misdiagnosis and further assessment. Ultrasound imaging is non-invasive and real-time, however, benign and malignant tumors are hard to differentiate in grayscale B-mode images. We hypothesis that breast tumors exhibit characteristic properties, which generates distinctive spectral patterns not only in scattering, but also during propagation. In this paper, we propose a breast tumor classification method that evaluates the spectral pattern of the tissues both inside the tumor and beneath it. First, quantitative ultrasonic parameters of these spectral patterns were calculated as the representation of the corresponding tissues. Second, parameters were classified by the K-Nearest Neighbor machine learning model. This method was verified with an open access dataset as a reference, and applied to our own dataset to evaluate the potential for tumors assessment. With both datasets, the proposed method demonstrates accurate classification of the tumors, which potentially makes it unnecessary for certain patients to take the biopsy, reducing the rate of the painful and expensive procedure.


Asunto(s)
Neoplasias de la Mama , Humanos , Femenino , Ultrasonografía , Neoplasias de la Mama/diagnóstico por imagen , Neoplasias de la Mama/patología , Mama , Biopsia , Biopsia con Aguja/métodos
4.
Appl Opt ; 62(31): 8299-8307, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-38037933

RESUMEN

A fiber Bragg grating (FBG) displacement sensor based on synchronous sensing is developed for real-time monitoring of a tunnel lining. The sensing principle and mechanical structure of the proposed sensor are analyzed and simulated, and its sensitization effectiveness and temperature compensation are verified. Equivalent model tests show that the sensor has a good linear sensitivity of 19.48 pm/mm and an excellent precision of 5.13×10-2 m m in the displacement range of 0-25 mm, which is basically consistent with the simulation results. The key traffic parameters of the train were successfully obtained by real-time monitoring of the tunnel lining in a field trial, which shows the superior capability of micro-displacement measurement of the sensor. Furthermore, good stability and excellent creep resistance have also been demonstrated. Our results provide theoretical guidance for the fabrication and package of the FBG displacement sensor, which is valuable for structure health monitoring (SHM) in civil engineering applications.

5.
Opt Express ; 31(22): 37019-37029, 2023 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-38017839

RESUMEN

We have proposed and demonstrated a weak acoustic signal detection technology based on phase-sensitive optical time-domain reflectometry (Φ-OTDR). Non-contact acoustic signals transmitting through air gap between the sound source and the receiver are difficult to detect due to fast attenuation. In order to improve the detection ability of non-contact weak acoustic signals, we demonstrate that multi-mode fiber (MMF) is a better solution than single-mode fiber (SMF) benefiting from its larger core and higher Rayleigh backscattering (RBS) capture coefficient. The frequency signal-to-noise ratio (SNR) has been enhanced by 9.26 dB. Then, with the help of 3D printing technology, elastomers have been designed to further enhance the detection ability due to the high-sensitive response to acoustic signals. Compared with the previous reported "I" type elastomer, the location and frequency SNR enhancement caused by our new proposed "n" type elastomer are 8.39 dB and 11.02 dB in SMF based system. The values are further improved to 10.51 dB and 13.38 dB in MMF and "n" type elastomer integrated system. And a phase-pressure sensitivity of -94.62 dB re rad/µPa has been achieved at 2.5 kHz. This non-contact weak acoustic signal detection technique has great application potential in the quasi-distributed partial discharge (PD) detection of smart grid.

6.
Opt Express ; 31(14): 22710-22721, 2023 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-37475375

RESUMEN

Optical soliton molecules exhibiting behaviors analogous to matter molecules have been the hotspot in the dissipative system for decades. Based on the dispersion Fourier transformation technique, the real-time spectral interferometry has become the popular method to reveal the internal dynamics of soliton molecules. The rising degrees of freedom in pace with the increased constitutes of soliton molecules yield more intriguing sights into the internal motions. Yet the soliton molecules with three or more pulses are rarely investigated owing to the exponentially growing complexity. Here, we present both experimental and theoretical studies on the soliton molecules containing three solitons. Different assemblies of the constitutes are categorized as different types of soliton triplet akin to the geometric isomer, including equally-spaced triplet and unequally-spaced triplet. Typical soliton triplets with different dynamics including regular internal motions, hybrid phase dynamics and complex dynamics involving separation evolution are experimentally analyzed and theoretically simulated. Specifically, the energy difference which remains elusive in experiments are uncovered through the simulation of diverse triplets with plentiful dynamics. Moreover, the multi-dimensional interaction space is proposed to visualize the internal motions in connection with the energy exchange, which play significant roles in the interplays among the solitons. Both the experimental and numerical simulations on the isomeric soliton triplets would release a larger number of degrees of freedom and motivate the potentially artificial configuration of soliton molecules for various ultrafast applications, such as all-optical buffering and multiple encoding for telecommunications.

7.
ACS Sens ; 8(7): 2664-2672, 2023 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-37352610

RESUMEN

Curing activity in the preparation of solid composite propellants determines the performance of solid rocket motors in operation. Limited by the lack of effective monitoring tools, the complete curing behavior and thermal-induced curing kinetics are rarely disclosed. It is still a challenge to monitor in situ and in real-time the physical and chemical cross-linking reaction during the curing of propellant. Herein, we demonstrate a promising approach based on optical fiber capable of being implanted inside the propellant to monitor the internal stress evolution during the curing process, by taking hydroxyl-terminated polybutadiene propellant as an example. Attributed to the strain and temperature sensitivity of a pair of optical fiber gratings, the thermal-assisted physico-chemical cross-linking states of curing process have been demonstrated in detail. By tracking the stress-induced wavelength shifts of fiber gratings and calculating the curing mechanism function, the complete curing roadmap, including the viscous flow stage, gel stage, hardening stage can be clearly revealed, and the curing completion times are obtained as 154, 81, and 40 h, at the curing temperatures of 60, 70, and 80 °C, respectively. The apparent activation energy of this curing system obtained by calculation is 73.88 kJ/mol. This flexible fiber-based sensor provides an effective tool for unraveling the cure kinetic mechanism, and paves a universal pathway to guide the preparation and applications of versatile composite materials for solid rocket motors.


Asunto(s)
Tecnología de Fibra Óptica , Fibras Ópticas , Cinética , Temperatura
8.
Light Sci Appl ; 12(1): 123, 2023 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-37198185

RESUMEN

Self-assembly of particle-like dissipative solitons, in the presence of mutual interactions, emphasizes the vibrant concept of soliton molecules in varieties of laser resonators. Controllable manipulation of the molecular patterns, held by the degrees of freedom of internal motions, still remains challenging to explore more efficient and subtle tailoring approaches for the increasing demands. Here, we report a new phase-tailored quaternary encoding format based on the controllable internal assembly of dissipative soliton molecules. Artificial manipulation of the energy exchange of soliton-molecular elements stimulates the deterministic harnessing of the assemblies of internal dynamics. Self-assembled soliton molecules are tailored into four phase-defined regimes, thus constituting the phase-tailored quaternary encoding format. Such phase-tailored streams are endowed with great robustness and are resistant to significant timing jitter. All these results experimentally demonstrate the programmable phase tailoring and exemplify the application of the phase-tailored quaternary encoding, prospectively promoting high-capacity all-optical storage.

9.
Photoacoustics ; 28: 100421, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36325305

RESUMEN

A miniaturized ultrasound sensor based on optical fiber is designed and realized for multichannel parallel ultrasound detection and photoacoustic imaging. The fiber optic sensor is composed of a polymer coating, a reflective mirror and a single-mode optical fiber, with only 125 µm in diameter. By integrating the coherent demodulation technology and multiplexing technology, which using a relatively cheap fixed wavelength laser, hundreds of sensors could work simultaneously. Meanwhile, highly sensitive ultrasound detection has been demonstrated with the noise equivalent pressure as low as 0.46 kPa and the sensor exhibits a nearly omnidirectional directivity. Furthermore, a photoacoustic imaging system based on three sensors working in parallel is demonstrated. High lateral resolutions of 165-217 µm and axial resolutions of 112-131 µm over a depth range of larger than 5 mm are obtained. A three-dimensional phantom imaging experiment is also demonstrated. Benefited from parallel detection, the imaging speed is three times faster than that of a single sensor. The miniaturized fiber optic ultrasound sensor probe provides a competitive alternative for mechanically scanning-free endoscopic imaging, which is beneficial from small size, omnidirectional directivity and parallel detection capability.

10.
Opt Express ; 30(13): 22538-22549, 2022 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-36224949

RESUMEN

We have numerically and experimentally presented the diffraction characteristics of radiated tilted fiber grating (RTFG) in terms of the spectrum, bandwidth, degree of polarization, angular dispersion, and temperature crosstalk. The theoretical and experimental results have shown that the polarization property, bandwidth, and dispersion of RTFG highly depended on the tilt angle of RTFG, and the RTFG has ultra-low temperature crosstalk. We have simulated the transmission spectrum of the RTFG with different tilt angles (25°, 31°, 38°, 45°, and 54°), in which the results show that the larger tilt angle has the wider bandwidth. The RTFGs with the tilt angle of 25°, 31°, 38°, 45°, and 54° have the 3dB bandwidth of 110 nm, 144 nm, 182 nm, 242 nm, and 301 nm, respectively. Besides, the degree of polarization (DOP) of the radiated light from RTFG with the different tilt angles are 0.876, 0.944, 0.967, 0.998, and 0.970, respectively, and the RTFG has the maximum DOP at the tilt angle of 45°, which could be used as single-polarization diffraction device. The experimental results show that with further increase or decrease of the tilt angle, the DOP of radiated light of RTFG would decrease. Both the theoretical and experimental results show that the smaller tilt angle could greatly improve the diffraction angular dispersion of RTFG, in which the 25°, 31°, 38°, and 45° RTFG have the angular dispersion of 0.2288 °/nm, 0.1026 °/nm, 0.0714 °/nm, and 0.0528 °/nm, respectively. Due to the broad working bandwidth, the diffraction angles of RTFG have ultra-low temperature crosstalk, where -0.00042, -0.00054, -0.00064, and -0.00099 degree / °C at the tilt angle of 25°, 31°, 38°, and 45°. Finally, we have demonstrated a miniaturized spectrometer integrated by a 25° RTFG, which has a high spectral resolution of 0.08 nm. The proposed RTFG would be an ideal in-fiber diffraction device and widely applied in spectral analysis, space optical communication, and Lidar areas.

11.
Opt Express ; 30(22): 39283-39293, 2022 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-36298883

RESUMEN

Nowadays, early defect detection plays a significant role for the railway safety warning. However, the existing methods cannot satisfy the requirements of real-time and high-precision detection. Here, a high-precision, distributed and on-line method for detecting rail defect is proposed and demonstrated. When a train goes through defects, the instantaneous elastic waves will be excited by the wheel-rail interaction, which will further propagate along railway tracks bidirectionally. Through mounting the backscattering enhanced optical fiber on the railway as sensors, the fiber optic distributed acoustic sensing system can record the propagation trace precisely. Further, the acoustic propagation fitting method is applied onto the propagation data to detect and locate defects along the long-distance railway. Especially, the dual-frequency joint-processing algorithm is proposed to improve the location accuracy. The field test proves that multiple defects along the railway can be successfully identified and located with a standard deviation of 0.314m. To the best of our knowledge, this work is the first report of distributed rail defect detection, which will bring a breakthrough for high-precision structural damage detection in the infrastructures such as the railway, pipeline and tunnel.

12.
Opt Express ; 30(16): 29639-29654, 2022 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-36299134

RESUMEN

In order to suppress the noise of the coherent fiber distributed acoustic sensing (DAS) system, the spatio-temporal joint oversampling-downsampling technique is proposed. The spatial oversampling is used for artificially dense sampling, whose spacing is far less than the target spatial resolution. Then the spatial downsampling performed by the average of multiple differential sub-vectors is utilized to reduce the influence of noise vectors, which could completely eliminate the interfere fading without increasing any system complexity and introducing any crosstalk. Meanwhile, the temporal oversampling-downsampling is analyzed from the perspective of theory and simulation, demonstrating that the noise floor will decrease with the increase of downsampling coefficient. The temporal oversampling is carried out to expand the noise distribution bandwidth and ensure the correct quantization of the noise frequency. Then the temporal downsampling of differential phase reconstruction is utilized to recover the target bandwidth and reduce the out-of-band noise. The experimental results prove that the noise floor is inversely correlated with the spatiotemporal downsampling factors. The strain resolution of the DAS system with the proposed scheme can reach 2.58pε/√Hz@100Hz-500Hz and 9.47pε/√Hz@10Hz under the condition of DC-500Hz target bandwidth, as well as the probability of the large-noise sensing channels is greatly reduced from 44.32% to 0%. Moreover, the demodulated SNR of dynamic signal is improved by 20.8dB compared with the traditional method. Without any crosstalk, the noise floor is optimized 8dB lower than the averaging technique. Based on the proposed method, the high-performance DAS system has significant competitiveness in the applications with the demand of high-precision and high-sensitivity, such as passive-source seismic imaging and VSP exploration.

13.
Opt Lett ; 47(19): 4937-4940, 2022 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-36181155

RESUMEN

In this Letter, we have proposed an in-fiber duplex optical antenna based on a 45° radiated titled fiber grating (RTFG), in which the 45° RTFG not only radiates the light from the fiber core to the free space, but also harvests the light from the free space back into the fiber core. Using the finite difference time domain method, we have theoretically analyzed the light recoupling efficiency of the RTFG. The simulated results have shown that the RTFG-based optical antennas have a maximum coupling efficiency of 10%. The recoupling wavelength and efficiency are related to the grating period and horizontal incidence angle. Furthermore, we demonstrate a programmable spectral filtering system based on the 45° RTFG antennas, which could achieve filtering with arbitrary spectral shapes. The spectral resolution is 0.4 nm and the insertion loss is around 20 dB. The proposed programmable spectral filtering system has a compact structure compared with the traditional filter.

14.
Opt Lett ; 47(15): 3700-3703, 2022 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-35913293

RESUMEN

A multi-channel parallel ultrasound detection system based on a photothermal tunable fiber optic sensor array is proposed. The resonant wavelength of the ultrasound sensor has a quadratic relationship with the power of a 980-nm heating laser. The maximum tuning range is larger than 15 nm. Through photothermal tuning, the inconsistent operating wavelengths of the Fabry-Perot (FP) sensor array can be solved, and then a multiplexing capacity of up to 53 can be theoretically realized, which could greatly reduce the time required for data acquisition. Then, a fixed wavelength laser with ultra-narrow linewidth is used to interrogate the sensor array. The interrogation system demonstrates a noise equivalent pressure (NEP) as low as 0.12 kPa, which is 5.5-times lower than the commercial hydrophone. Furthermore, a prototype of a four-channel ultrasound detection system is built to demonstrate the parallel detection capability. Compared with the independent detection, the SNR of parallel detection does not deteriorate, proving that the parallel detection system and the sensor array own very low cross talk characteristics. The parallel detection technique paves a way for real-time photoacoustic/ultrasound imaging.


Asunto(s)
Tecnología de Fibra Óptica , Rayos Láser , Diseño de Equipo , Ultrasonografía
15.
Adv Sci (Weinh) ; 9(26): e2203247, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35863904

RESUMEN

With zero excess lithium, anode-free lithium metal batteries (AFLMBs) can deliver much higher energy density than that of traditional lithium metal batteries. However, AFLMBs are prone to suffer from rapid capacity loss and short life. Monitoring and analyzing the capacity decay of AFLMBs are of great importance for their future applications. It is known that the capacity fade mainly comes from the formation of solid electrolyte interphase species and dead lithium, which leads to irreversible volume expansion. Therefore, monitoring and distinguishing the irreversible volume expansion or reversible volume expansion are the key points to analyze the capacity fade of AFLMBs. Herein, an applicable technique based on optical fiber sensors to characterize and quantize the volume change of AFLMBs is developed. By attaching fiber Bragg grating (FBG) sensors onto the surface of the multilayered anode-free pouch cells, the strain evolution of the cells is successfully monitored and correlated with their electrochemical properties. It is found that the decline of surface strain fluctuation amplitude caused by the loss of active lithium is the leading indicator of battery failure. The proposed sensing technique has excellent multiplexing capability that can be considered as an elementary unit for capacity fade analysis in next-generation battery management system.

16.
Opt Lett ; 47(21): 5581, 2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37219273

RESUMEN

This publisher's note contains corrections to Opt. Lett.47, 4937 (2022)10.1364/OL.468940.

17.
Opt Lett ; 46(12): 2924-2927, 2021 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-34129575

RESUMEN

In-service crosstalk monitoring based on the precoding technique in a discrete multitone (DMT) system is proposed and validated experimentally. The method relies on the ability of time-frequency domain equalization of precoded DMT. Experiments on a 20 GBaud 16 quadrature amplitude modulation DMT system over seven-core weakly coupled multicore fibers (MCFs) are conducted. The inter-core instantaneous average crosstalk (IAXT) is gathered and evaluated in a period as short as 10 µm without disturbing the signal transmission. Such IAXT has a high correlation with the bit error ratio (BER), and a transmission performance evaluation strategy of the MCF transmitting system is developed according to the relationship between IAXT and BER.

18.
Opt Express ; 29(8): 11538-11547, 2021 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-33984931

RESUMEN

Liquid level sensor with large sensing range and high-resolution is essential for the application of industry monitoring. In this work, a distributed optical fiber liquid level sensor is proposed and demonstrated based on phase-sensitive optical time domain reflectometry (φ-OTDR). In the basic of the thermal optic effect, the temperature change will induce the fluctuation of the effective refractive indexes of the fiber core, as well as the fluctuation of the optical path of the light transmitting in the fiber. Therefore, the φ-OTDR can detect the liquid level with a large measurement range by interrogating the phase information along the fiber due to the temperature difference between the liquid and air. Further, the scattering enhanced optical fiber (SEOF) is used as the sensing fiber to improve the signal to noise ratio (SNR) of the phase signal. Moreover, a high sensitivity liquid level sensing head by wrapping the SEOF on a heat conductive cylinder is designed and optimized to improve the sensing resolution. In the experiment, the proposed distributed liquid level sensor presents a high sensitivity of 73.4 rad/mm, corresponding to a competitive liquid level resolution of 142µm based on the noise floor of 10.4 rad within 160 s. The field test validates a large sensing range of 20 cm which is limited by the cylinder length, while a potential sensing range could reach 320 m with the sensing fiber of 40 km, proving a dynamic range of 127.1 dB. The proposed liquid level sensor with large dynamic range and high sensing resolution can benefit potential application in smart industry platforms and biomedicine monitoring.

19.
Nanomaterials (Basel) ; 10(12)2020 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-33317010

RESUMEN

The determination of hemoglobin (Hb) level is indispensable in the pathological study of many blood diseases. Graphene oxide (GO), with its excellent optical properties and great biocompatibility, has attracted significant attention and been widely utilized in biochemical detection. Here, we report an ultrasensitive Hb sensor based on a graphene oxide (GO)-coated microfiber. The GO was utilized as a linking layer deposited on the microfiber surface, which can provide an enhanced local evanescent light field and abundant bonding sites for Hb molecules. The optical microfiber with a compact structure and a strong evanescent light field served as the platform for biosensing. The surface morphology characterized by optical microscope, scanning electron microscope, and Raman spectroscopy offers detailed evidence for the success of GO deposition. The dynamic bonding between GO and target Hb molecules was monitored in real-time through an optical spectrum analyzer. An ultrahigh sensitivity of 6.02 nm/(mg/mL) with a detection limit of 0.17 µg/mL was achieved by tracking the resonant wavelength shift of spectra. It is important to highlight that the detection limit of GO-coated microfiber is 1-2 orders of magnitude lower than other reported fiber optic Hb sensors. Benefiting from high sensitivity, low cost, small size, and fast response, the proposed sensing microfiber coated with GO could be a competitive alternative in the diagnosis of blood diseases and a subject of further research in the medical field.

20.
Sensors (Basel) ; 20(21)2020 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-33105626

RESUMEN

We characterized a cascaded long-period gratings (LPGs)-based sensor that was operating at the phase-matching turning point (PMTP). The cascaded LPGs constructed an in-fiber Mach-Zehnder interferometer (MZI), which exhibited a series of high-quality-factor (Q) narrow-bandwidth resonance peaks. As the LPG operated at the PMTP, the proposed sensor showed an ultrahigh refractive index (RI) and temperature sensitivity, and high measurement precision. In this study, we took an in-depth look at the effects of grating separation on Q-factor and sensitivity. The results showed that the sensitivity to the surrounding refractive index (SRI) reached 4741.5 nm/RIU at 1.4255 and 2138 nm/RIU, over the range of 1.335-1.373. In addition, the temperature sensitivity was around 4.84 nm/°C. With a 0.02 nm wavelength resolution, the RI and temperature sensing limits were 9.3 × 10-6 RIU and 5.5 × 10-3 °C.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...